
FIT TO BURST:
A Practitioner’s Guide to
Cloudbursting
Darren Birkett & Paul Miller

RACKSPACE WHITE PAPER:

A PRACTITIONERS GUIDE TO CLOUDBURSTING
PAGE: 1

Licence
This work is licenced under the Creative Commons Attribution 2.0
UK: England & Wales Licence. Any reuse should give attribution to
Rackspace Hosting, with a link to the website at www.rackspace.co.uk.

To view a copy of this licence, please visit
creativecommons.org/licenses/by/2.0/uk/
or send a letter to Creative Commons, 444 Castro Street, Suite 900,

Mountain View, California 94041, USA

Conventions
This white paper was produced for Rackspace Ltd.

However, most of the discussion in this document is explicitly intended
to be generic in nature and relevant to most cloud computing or
hosting environments.

Where specific reference is made to Rackspace products or
capabilities, these sections are clearly marked with the Rackspace logo.

RACKSPACE WHITE PAPER:

A PRACTITIONERS GUIDE TO CLOUDBURSTING
PAGE: 2

TABLE OF CONTENTS
DESCRIPTION PAGE

Licence 1

Conventions 1

Table of Contents 2

Introduction 3

The Role of Cloudbursting 5

Preparing to Cloudburst 7

Selecting your cloud 7

Capacity Potential 7

PAYG 8

APIs 8

Machine Images 9

Operating Systems 9

Licences 10

Hypervisor 10

Network Latency 10

Bandwidth 10

Support 11

Reputation 11

What to Cloudburst 12

Web Servers First 13

Application Second 14

Database as a Last Resort 15

An Important Reminder 17

When to Cloudburst 17

On A Known Date 17

At A Triggered Threshold 18

A word about monitoring 18

DESCRIPTION PAGE

How to Cloudburst 19

Degrees of Automation 19

Level 0 - The Manual Approach 20

Level 1 - The Big Red Button 21

Level 2 - Cron is Your Friend 24

Level 3 - The Singularity is Nigh 25

The role of the load balancer 27

What Goes Up, Must Come Down 28

Cloud Management Tools 28

Summary and Recommendations 29

Prepare 29

Automate 29

Test 29

RackConnect 30

About Rackspace 31

RACKSPACE WHITE PAPER:

A PRACTITIONERS GUIDE TO CLOUDBURSTING
PAGE: 3

Introduction
“The dynamic deployment of a software application that runs on
internal organisational compute resources to a public cloud to
address a spike in demand.”

(Geva Perry’s Cloud Computing Terminology, August 2008)

Cloud Computing advocates argue that it offers a wide range of
benefits, but one that frequently recurs is that of flexibility. A model
in which computing resources may be procured – and released – as
demand fluctuates is a potentially powerful one, enabling a business
to respond to peaks in demand without having to carry the cost of
unused IT capacity at other times.

Cloudbursting is the practice of responding to increased demand by
temporarily moving all or part of a software application from existing
infrastructure (in your own data centre, in a hosting environment or
co-location facility, or in an existing public or private cloud setting)
to also run on additional infrastructure in a public or private cloud.
Where the act of cloudbursting results in both public and private
cloud infrastructure being used, this may be considered a hybrid cloud
solution.

Cloudbursting has frequently been misrepresented, with some
believing that bursting can occur almost instantaneously in response to
unanticipated outages or unforeseen peaks in demand. Amongst those
who understand the not-insignificant timescales required to acquire
and provision new compute capacity from a cloud provider, this has led
to the broader concept being unfairly dismissed.

However, the real benefit of cloudbursting lies in its ability to support
businesses as they cost-effectively implement procedures to address
foreseen peaks in traffic.

• Retailers know when Christmas is coming, and when they’re hosting
sales or promotions;

• Television stations know when on-screen trails and competitions are
going to generate traffic;

• Everyone knows when the Olympics are coming;

• HMRC knows when quarterly VAT filings and annual Self Assessment
tax returns are due;

• Universities and colleges know when course options are made
available for selection, or when exam results are published;

• Travel agents know when the bulk of holiday bookings are made;

• Ticket companies know when tickets for a hotly anticipated band are
going to be made available for sale;

RACKSPACE WHITE PAPER:

A PRACTITIONERS GUIDE TO CLOUDBURSTING
PAGE: 4

• Employers know when their monthly payroll process will run.

These fluctuations in demand are significant, they are important, and
they are typically associated with events during which a company
can generate much (perhaps most) of its revenue for the year. Most
significantly, the timing (although not necessarily the amplitude) of
these fluctuations is almost entirely predictable.

This white paper demonstrates how a little planning, preparation,
automation and monitoring is enough to ensure that your business
can benefit from the reality of cloudbursting, saving yourself both
pain and money, whilst delivering a better service to your customers.

To illustrate the practicalities of cloudbursting, we will from time to
time consider the example of a hypothetical network of florist shops
– Flowers Ltd. These shops are located across the United Kingdom,
with a central e-commerce site operating from a hosting facility.
Cloudbursting will be used to meet anticipated peaks in demand on
Valentine’s Day and Mother’s Day.

1Survey of over 400 IT Decision Makers in US and EMEA, at organisations with between 100 and
500 staff, commissioned by Rackspace from independent agency LoudHouse
2John McCarthy MIT centennial speech, 1961.

RACKSPACE WHITE PAPER:

A PRACTITIONERS GUIDE TO CLOUDBURSTING
PAGE: 5

The Role of Cloudbursting
Traditional computing infrastructure tends to be significantly over-
specified, in order to cope with spikes in demand. In environments
where usage is predictable and reasonably constant, demand will only
fluctuate slightly and it may therefore prove cost effective to ensure that
the computing environment includes a little excess capacity.

However, steady utilisation is increasingly unusual, especially in
customer-facing applications such as those found on the web. Here,
sometimes dramatic fluctuation in usage is expected, and even
encouraged.

Infrastructure specified to cope with ‘normal’ utilisation levels cannot
deliver an adequate service during these spikes in demand, leading to
slower responses, higher numbers of errors, and lost customers; which
is difficult to accept when the spike in traffic was either anticipated or –
worse – engineered.

FLUCTUATING DEMAND FOR IT RESOURCES OVER TIME

Assuming that these spikes are to be actively managed rather than
ignored, there are two broadly applicable solutions to consider in
securing the additional capacity (shown in red on the diagram) required:

• Additional computing capacity could be purchased. This will typically
represent a significant up-front capital cost, and the servers will run
all day, every day, ready and waiting for occasions on which their
services are required. For businesses that anticipate regular (hourly,
or perhaps daily) spikes in usage, this may be a viable approach. The
new servers will typically sit in a company’s data centre, or with its
chosen hosting company.

D
E

M
A

N
D

TIME

Capacity required for normal usage

Extra capacity required to meet peaks in demand

RACKSPACE WHITE PAPER:

A PRACTITIONERS GUIDE TO CLOUDBURSTING
PAGE: 6

• Additional computing capacity could be rented, on demand. The
servers belong to someone else (typically a cloud infrastructure
provider such as Rackspace1 or Amazon2), and the customer normally
only pays for them when they are required. Computing capacity
is rented just ahead of an anticipated spike, and the meter starts
running. The additional traffic is handled, and when the spike passes
the capacity is released back to the infrastructure provider’s pool
and the meter stops. The customer simply pays for the capacity that
they used. Any existing IT infrastructure will normally be configured
in a cloud-friendly manner3, running in a public or private cloud
environment. Additional capacity may be procured in the same
environment, or a hybrid cloud might be created that includes both
public and private elements. A hybrid scenario can help address
concerns over security, as more sensitive data or applications can be
managed on dedicated hardware whilst the public cloud is used for
handling peak traffic.

This second approach is an example of cloudbursting, and probably
appears an ideal way to cope with fluctuating demand for a resource
such as your web site. An individual unit of computing may often
(although not always) cost less to own than to rent when it is being used
almost constantly (the green area on the diagram) and for years at a
time. But it is far cheaper to rent additional capacity for short periods of
time than to buy it and have it standing expensively idle for the majority
of its useful life.

However, effective cloudbursting requires preparation.

• New physical or virtual servers need to be rented, started, and
configured;

• Relevant software needs to be installed;

• Any necessary data needs to be copied to the new machines;

• The existing application needs to be flexible, and able to integrate this
new capacity without customers becoming aware that anything is
changing;

• The application needs to be able to release the excess capacity once
traffic levels drop, moving any new or modified data safely back to
the core infrastructure before it is lost.

In the next section, we look at some of the straightforward questions
that should be addressed in beginning to prepare for effective
cloudbursting.

1 http://www.rackspace.co.uk/cloud-hosting/
2 http://aws.amazon.com/
3 http://www.cloudave.com/11973/designing-for-failure-some-key-facts/

Rackspace can provide consultancy and technical expertise to help with
your cloudbursting needs. Our hybrid cloud service, RackConnect brings
together dedicated hosting and the Rackspace cloud into a single hybrid
solution commonly used by customers to meet their cloudbursting needs.

RACKSPACE WHITE PAPER:

A PRACTITIONERS GUIDE TO CLOUDBURSTING
PAGE: 7

Preparing to Cloudburst
With a little preparation, cloudbursting can become a straightforward
and cost-effective means to supplement existing IT infrastructure with
additional cloud-based resources. Time spent in planning at an early
stage will help to ensure that your chosen model is fit for your purposes,
and capable of being called upon to deliver additional capacity
whenever you think that it will be required.

Selecting your cloud
There are few – if any – cloud providers on the market today that
will allow an unknown new customer to call and immediately request
hundreds or thousands of virtual machines. To aid capacity planning,
and to fight the ever-present problem of spammers, cloud providers
tend to build a relationship with customers before allowing high levels of
usage. It also makes sense for you to set up an account and get to know
your cloud provider and its capabilities – before you have to put them to
the test.

There are a growing number of cloud infrastructure providers on the
market, from internationally recognised names such as Rackspace,
Amazon and GoGrid, through national telecoms companies to
smaller local providers. Each plays a role, and each has strengths and
weaknesses.

The first task in preparing to cloudburst is to select the cloud provider
with which you intend to work. There is no single correct answer.
The best cloud provider for you will depend upon your existing
infrastructure, exactly what you want to do, and how, why, and where
you want to do it. It is worth considering each of the following when
making a decision.

Capacity Potential
How much computing capacity or network bandwidth are you likely
to need, at the peak of your demand? Consider your typical level of
traffic, and the infrastructure that you use to cope with this. Estimate
the additional load that you anticipate and use this to calculate the
additional infrastructure that is likely to be required. If the system is
architected to scale smoothly then it is not necessary to predict peak
load with total accuracy at this stage, as capacity can be increased or
decreased at run-time.

Does your preferred cloud provider own that much capacity? Even if
they do, are they going to let you have all of it?

As of April 2012, a standard Rackspace Cloud account can access up to
50GB of physical memory, in 256MB units.

RACKSPACE WHITE PAPER:

A PRACTITIONERS GUIDE TO CLOUDBURSTING
PAGE: 8

Is your business likely to experience peaks in demand at the same time
as your competitors; are you all going to be accessing a finite pool of
additional capacity at the same time?

Flowers Ltd expects to see peaks in demand in the week leading up to
Valentine’s Day on 14 February, and in the week leading up to Mother’s
Day in March. The company normally runs its e-commerce operation on
seven virtual servers at a UK hosting facility – four load-balanced web
servers, two application servers, and a single database server. They plan
to cloudburst to an additional 12 web servers and a single additional
application server. This requirement is easily met by their chosen cloud
provider, especially as February and March are typically not months in
which other industries require significant additional IT capacity.

PAYG
The notion of Pay As You Go (PAYG) is an important part of the
economic justification for a cloudburst-based solution. Cloud providers
approach PAYG in different ways, with some truly only charging for
actual resources consumed. Others may have minimum contract
lengths, minimum fees, minimum chargeable units, separate contractual
conditions for network connections and servers, and other small print.
Ensure that you understand the way in which you expect to use the
cloud, and confirm that the contractual relationship offered by your
supplier will suit this. The most granular charging regime is not always
the best; why, for example, pay a premium to be charged by the minute
or second when your computing jobs all run for hours at a time?

APIs
Automation is a key aspect of enabling cost-effective and repeatable
cloudbursting. To effectively automate the process of cloudbursting,
your chosen cloud provider needs to provide a rich and robust
Application Programming Interface (API) to their cloud. Scripts and
automation tools will depend upon this API to complete tasks that
would otherwise require human interaction with a web management
interface or command line console, reducing the scope for automation,
increasing costs, and introducing opportunities for error.

This API will typically support the main functions offered by the cloud
provider’s web management interface, namely:

• Spinning up a virtual machine;

• Spinning down a virtual machine;

As of April 2012, Rackspace bills by the hour for server usage. Bandwidth
charges are rounded up to whole Gigabytes, and billed at 12p per Gb.

4 http://www.rackspace.co.uk/cloud-hosting/cloud-products/cloud-servers/api/

RACKSPACE WHITE PAPER:

A PRACTITIONERS GUIDE TO CLOUDBURSTING
PAGE: 9

• Resizing a virtual machine;

• Suspending a virtual machine;

• Deleting a virtual machine.

Machine Images
When new virtual machines are started, they tend to be built from
minimal base images. Before being put to work, they need to be loaded
with the specific settings, libraries, applications and data that their
task will require. Downloading and compiling applications, tweaking
networking configurations, securing firewalls, copying data; none
of these tasks are individually or collectively difficult, but they are
repetitive, time consuming, and potentially prone to error. They lend
themselves extremely well to automation.

The simplest way to manage the configuration of these new machines
is typically by interacting with a configuration management tool such as
Puppet5 or Chef6. By applying ‘roles’ to different types of machine (web
server, database, etc.), it becomes relatively straightforward to ensure
that all machines fulfilling a specific role are configured in exactly the
same way, quickly, easily, and – most importantly – replicably. Your cloud
provider and third parties such as RightScale7 may offer a set of basic
machine images that you can modify to meet your own requirements.

Operating Systems
Does your chosen cloud provider support the operating systems that
you require? Do they support the version or distribution that you
require?

Although it normally makes sense to ensure that the configuration of
virtual machines in the cloud closely mirrors the configuration of your
own servers, the commercial licensing arrangements around Linux
distributions such as Red Hat may mean that it is cheaper to use a non-
commercial Linux distribution in the cloud. Can your application run on
Red Hat Linux on your own servers, and on Fedora or CentOS in the
cloud, and still behave as expected?

Rackspace Cloud Servers currently support various configurations of
Windows Server 2008, as well as the major Linux distributions8.

5 http://puppetlabs.com/
6 http://www.opscode.com/chef/
7 http://rightscale.com/
8 http://www.rackspace.co.uk/cloud-hosting/cloud-products/cloud-servers/how-it-works/

The Rackspace Cloud Servers API4 supports these key functions.

RACKSPACE WHITE PAPER:

A PRACTITIONERS GUIDE TO CLOUDBURSTING
PAGE: 10

Licenses
If you are relying upon commercially licensed software to power your
application, are you permitted to extend that license to the cloud? Are
you able to negotiate short-term extensions to an existing license to
support additional use, or must any extension be negotiated for a long
term of 12 months or more?

Hypervisor
For the cloudbursting applications being considered in this paper, the
hypervisor supported by your chosen cloud provider is largely irrelevant.
There is a widely held misconception that this matters when moving
to the cloud, but that only really becomes the case when you start to
consider moving running virtual machines (portable images) from one
cloud to another. That is beyond the scope of this paper.

Location
Where are your chosen cloud provider’s data centres located? Do those
locations raise any legal issues of which you need to be aware? If you are
a European company, for example, and working with data on European
citizens, does your data need to stay inside the EU or will the existing
Safe Harbor Provisions10 permit you to use a US-based cloud?

Network Latency
How far away from your customers and your existing IT infrastructure
is your chosen cloud provider located? What is network connectivity
between the locations, and is the time taken to transfer data from one
site to another likely to cause problems?

Bandwidth
What does your chosen cloud provider charge for network bandwidth?
Are there arrangements (such as Rackspace RackConnect or Amazon
Direct Connect11) in place that might lower the cost of transferring data
between your existing hosting infrastructure and the cloud?

Rackspace Cloud Servers are based upon the Xen Classic and Citrix
XenServer hypervisors9.

Rackspace Cloud customers in the UK use a data centre just outside
London. Customers with an account in the US can additionally access the
Rackspace Cloud in Dallas and Chicago data centres.

9 http://en.wikipedia.org/wiki/Xen_hypervisor
10 http://export.gov/safeharbor/
11 http://aws.amazon.com/directconnect/
12 http://www.rackspace.co.uk/managed-hosting/hosting-solutions/hybrid-hosting/rackconnect/
13 http://www.rackspace.co.uk/clients/detail/c/department-for-transport/

RACKSPACE WHITE PAPER:

A PRACTITIONERS GUIDE TO CLOUDBURSTING
PAGE: 11

Network latency and bandwidth are significant issues when planning
a hybrid cloud solution in which data must be copied back and
forth between public and private cloud infrastructure. Rackspace
RackConnect, Amazon Direct Connect and similar initiatives are
intended to reduce these issues by providing dedicated connections
between your hosting provider and a public cloud.

Support
How important is access to support from your cloud provider? Some
cloud providers offer more support than others.

Reputation
Finally, you are hopefully choosing a partner with whom you can grow.
The very nature of cloudbursting means that you are also choosing a
partner upon whom you will have to depend at times when your own
organisation is likely to be under intense pressure. What is your chosen
cloud provider like? How is it perceived by your peers, and by your
competitors? How is it perceived in the industry, and how does it make
you feel?

Rackspace’s award-winning Fanatical SupportTM has been its main
differentiator and key driver of the company’s growth since its inception
in 1998.

RackConnect provides a direct connection between a customer’s physical
servers hosted in a Rackspace data centre, and the elastic resources
of the Rackspace Cloud. More information is available on page 35, and
online12. The UK Government’s Department for Transport provides one
example of a successful hybrid cloud solution, enabled by RackConnect13.

RACKSPACE WHITE PAPER:

A PRACTITIONERS GUIDE TO CLOUDBURSTING
PAGE: 12

What to Cloudburst
This paper describes the use of cloudbursting to provide additional
short-term capacity for an application. The design and purpose of the
application, and the manner in which data flows between its various
components, will influence decisions about how best to augment
existing infrastructure with the cloud. There is no substitute for
addressing these local specifics on a case-by-case basis, but a number
of issues can usefully be explored with reference to the traditional three-
tier model for a web application.

THE THREE-TIER MODEL

It is important to understand an application before deciding how best
to benefit from cloudbursting. What, for example, is the application
designed to do? Has it been built in a modular and horizontally scalable
fashion, or is it a monolithic collection of code that combines and
confuses presentation, application, data, and business logic? At one
extreme, applications that are modular and horizontally scalable lend
themselves well to the cloudbursting approaches discussed in this paper.
At the other extreme, applications that are extremely monolithic may
not be suitable for cloudbursting at all.

How important are transactions within the application, and how quickly
must the results of any transaction be communicated to other areas
of the application? If you are simply collecting names and addresses
so that you can send out a newsletter, there is no real requirement

PRESENTATION
TIER

APPLICATION
TIER

DATA
TIER

RACKSPACE WHITE PAPER:

A PRACTITIONERS GUIDE TO CLOUDBURSTING
PAGE: 13

for that data to be available throughout the application immediately
after the user enters it, and the system design can reduce unnecessary
complexity by reflecting this. However, an airline check-in system is
allocating a finite number of seats on a plane, and each check-in agent
and self check-in machine really needs a current view of seat availability
at all times. A highly transactional system such as this may still benefit
from cloudbursting, so long as the application is implemented in a way
that ensures data updates pass between nodes in a timely manner.

Web Servers First
Considering the three-tier model for a typical application, we need to
find an approach to cloudbursting that delivers the maximum benefit,
whilst minimising the need to redesign an existing architecture and
keeping the additional bandwidth costs for transferring data as low as
possible.

In the majority of cases, the simplest approach will simply be to add
additional web servers to the presentation tier. A load balancer ensures
that traffic is efficiently shared between the original web servers and the
new ones started up in the cloud. For most web sites, the vast majority
of visitors are simply browsing. They are therefore typically viewing
static web pages, or cached copies of database-driven pages. There is
very little need to interact with the application tier, and even less need to
interact regularly with the data tier. By pushing most of these browsing
visitors to the temporary cloud infrastructure, the minority of visitors
wishing to interact, buy, sell, or book may well be adequately managed
on the existing permanent infrastructure.

CLOUDBURSTING THE PRESENTATION TIER

PRESENTATION
TIER

APPLICATION
TIER

DATA
TIER

RACKSPACE WHITE PAPER:

A PRACTITIONERS GUIDE TO CLOUDBURSTING
PAGE: 14

These web servers can also run small local databases with sufficient
capability to store simple records such as new registration details,
customer requests, etc. This information is then integrated with the
application’s main database at a later date.

Flowers Ltd operates a typical web business, in which over 90% of site
traffic takes the form of browsing through the catalogue rather than
actually ordering anything. With usage of this type, most spikes in
traffic can simply be met by cloudbursting to additional web servers
and caching the most popular web pages. The company’s existing
application and database servers cope adequately with any excess load,
except immediately before the annual highpoints on 14 February and
Mother’s Day.

Application Second
In some situations, simply adding additional web servers may not be
sufficient to address anticipated demand.

CLOUDBURSTING THE APPLICATION TIER

In these circumstances it may be feasible to also add additional servers
in the cloud, dedicated to running the core application. A load balancer
ensures that traffic is efficiently shared between all of the servers
running the application, but the application must first be written in a

PRESENTATION
TIER

DATA
TIER

APPLICATION
TIER

RACKSPACE WHITE PAPER:

A PRACTITIONERS GUIDE TO CLOUDBURSTING
PAGE: 15

manner that suits passing data between a potentially large number of
virtually identical application instances.

Database As A Last Resort
The database lies at the heart of most modern web applications, and
this is the most difficult layer of the model to split up. It is certainly
not impossible, but developers should normally exhaust other options
before attempting this. Only one person can sit in seat 1A on the
aeroplane, only one person can buy the last ticket to a concert, and
only one person can book the 10am delivery slot from Tesco. In these,
and other, cases, any segmentation of the application’s database must
ensure that consistency is maintained and that customers receive
accurate information. Databases can be copied, they can be partitioned
horizontally, and they can be sharded vertically. Each is feasible, and
each delivers costs and benefits that must be considered in the context
of your application.

CLOUDBURSTING THE DATA TIER

Wherever possible, though, simply leave the database alone. This
reduces the opportunity for error, and makes the cloudbursting process
far more nimble as large volumes of data do not need to be transferred
at either the start or end of the bursting process.

PRESENTATION
TIER

DATA
TIER

APPLICATION
TIER

RACKSPACE WHITE PAPER:

A PRACTITIONERS GUIDE TO CLOUDBURSTING
PAGE: 16

Keeping Customer Data Close to Home
A reputable cloud service is likely to be as secure – if not more so – than
your local data centre. Nevertheless, internal policies and local legislation
may require personally identifiable information regarding customers and
their financial details to be stored in a specific location.

Cloudbursting can still deliver business value in this slightly more
complex scenario; servers storing customer data or processing financial
transactions simply remain on-premise, whilst cloudbursting is used as
before to address growth in other areas of the application stack.

As mentioned above, the majority of traffic is likely to be browsing
the Presentation Tier, and not interacting directly with the customer
database or financial systems.

E-COMMERCE PROCESSES CAN REMAIN ON-PREMISE

If load on the customer database or the financial system grows too
great, on-premise web or application servers can have their traffic
diverted to additional servers in the cloud. The on-premise machines
are then free to be re-purposed as additional database or financial
processing servers, although some time will be required to reconfigure
the machines for their new role.

This scenario is increasingly addressed through the use of a hybrid cloud
environment, in Rackspace’s case enabled by RackConnect.

PRESENTATION
TIER

DATA
TIER

APPLICATION
TIER

RACKSPACE WHITE PAPER:

A PRACTITIONERS GUIDE TO CLOUDBURSTING
PAGE: 17

An Important Reminder
It is important to remember that this advice is intended for those
situations in which all three tiers of an application are already running,
with a requirement to add additional capacity for a limited period of time.

Different considerations apply when a new application is being designed
to rely upon cloud-based infrastructure from the outset, but these are
beyond the scope of this paper.

When to Cloudburst
To deliver maximum benefit, cloudbursting should be initiated in
a planned and controlled fashion, in response to one of two main
scenarios.

On A Known Date
The easiest form of cloudbursting is undertaken on a known date. This might be to provide

additional capacity for the monthly payroll process, to cope with a rush of pre-Christmas

spending on Black Monday, or to support downloading of a hotly anticipated new software

release or album.

The date is normally known well in advance, meaning that everything can be agreed,

prepared, deployed and tested before it is needed.

Initialisation and configuration of the new virtual machines will typically be driven by a set

of pre-prepared scripts, which are either manually started or triggered by a calendar event

or cron job.

As every step can be tested in advance, the elapsed time between instructing new virtual

machines to be created and having them available for use will be known, and the whole

process can be timed in order to have the new capacity ready just before increased

demand will require it to accept traffic.

At Flowers Ltd, Valentine’s Day traffic is expected to rise sharply on the evening of 9

February, peak at lunchtime on 11 February, and remains high until mid-morning on

14 February. The company plans to deploy 12 additional web servers and 1 additional

application server to cope with the predicted surge. Eight of the web servers are started

at 5pm on 9 February, ready to cope with the increased traffic that evening. An additional

4 web servers and the application server are started at 11am on 11 February, well ahead of

the traffic peak that lunch time, and then shut down on the morning of the 13th as demand

begins to fall. All of the other machines remain running until noon on 14 February, when

Flowers Ltd returns to simply relying upon their normal infrastructure.

15 By ‘ready for use’ we mean post-chef configuration, with the application and data all
present and ready to receive traffic. For very basic applications utilising very small
base images this time would be much reduced

RACKSPACE WHITE PAPER:

A PRACTITIONERS GUIDE TO CLOUDBURSTING
PAGE: 18

At A Triggered Threshold
Virtualisation is also the power behind most Public Cloud solutions –
whether Despite the time (often around 20 minutes) needed to have a
new virtual machine ready for use15, it may still be feasible to rely upon
cloudbursting when responding to unanticipated spikes in demand. If
the planning needed for implementing an anticipated cloudburst has
already been done, then the same techniques are also at your disposal
when the unexpected happens.

The key here is to identify the metrics that describe the health of your
application, implement a means of monitoring those metrics, and have a
mechanism to trigger a cloudburst when conditions require it.

Basic metrics include:

• CPU utilisation;

• RAM utilisation;

• Numbers of synchronous visitors;

• Load times for key web pages.

One of Flowers Ltd.’s largest competitors fails to meet their own
growth in traffic, and the site goes offline on 9 February just as all of
the florists begin to experience increased traffic. This leads to a higher
than anticipated spike in traffic for Flowers Ltd, triggering warnings
as utilisation levels – and customer wait times – increase faster than
predicted. Already prepared to scale, the company simply launches
additional servers earlier than planned. After a short delay while the
new servers come online, the site returns to its intended levels of
performance.

A word about monitoring
There are a wide range of monitoring tools that are worth exploring,
including Nagios16, Munin17, and Ganglia18. It is important to ensure that
your chosen tool can measure the metrics that are most important to
you, at a sampling interval and resolution that meets your needs.

You may wish to consider whether or not your chosen tool will also
be able to monitor the cloudburst machines that you create, and the
degree to which it can provide useful data to any automation tool that
you might wish to use in managing the cloudbursting process itself.

16 http://www.nagios.org/
17 http://munin-monitoring.org/
18 http://ganglia.sourceforge.net/

RACKSPACE WHITE PAPER:

A PRACTITIONERS GUIDE TO CLOUDBURSTING
PAGE: 19

How to Cloudburst
Cloudbursting involves following a predefined set of actions that will

• Start a new virtual machine;

• Populate it with the required machine image and roles;

• Configure network addresses, ports, firewalls, etc.;

• Upload any data that may be required;

• Make the machine available to the load balancer;

• Begin accepting traffic.

Cloudbursting rarely involves only a single virtual machine, so these steps
are typically repeated many times during a single cloudbursting event.

Degrees of Automation
It is possible to complete these steps manually, either by running one script
after another, or by entering sets of commands by hand. To ensure reliability
and efficiency, it makes far more sense to automate the process using a tool
such as Chef.

The various degrees of automation that you might choose to employ fall
into one of fourlevels, detailed below.

Sample code is offered at each level, to illustrate the required steps.
All sample code used in these examples can be found in the github
repository at http://goo.gl/Rm6zC. The actual code that you use will
depend upon your own infrastructure, preferred scripting language,
or API that you are interacting with. The examples are based upon a
number of basic assumptions, which help to trivialise the code and make
it easier to highlight the most pertinent points:

• We are using the OpenStack API , but these examples should be easy
to adapt to any RESTful API;

• Our servers are all being built using a base image that contains our
public SSH key, so we do not need to store the auto-generated admin
password;

• Our servers are all being built using a base image that contains a
firstboot script that will automate the Chef install/configuration
(installs Chef client, self-registers with Chef server and pulls the
necessary configuration according to role);

• All servers in our account are exactly the same (e.g. web servers);

• This is proof of concept code, without proper error handling;

• Server names will all end up being the same;

• We already know the ID of the image that we want to build, from our
image repository;

• We are not tackling the task of adding servers to or removing servers from

the load balancer (see page 32);

RACKSPACE WHITE PAPER:

A PRACTITIONERS GUIDE TO CLOUDBURSTING
PAGE: 20

PLEASE NOTE - there are easier ways to do this! Depending on your cloud
provider, it’s very likely that you will be able to utilise a set of language
specific bindings/libraries for your chosen programming language. These
libraries would provide the framework to interact with your cloud provider
api using standardised functions/methods. A lot of those bindings also
provide a simple commandline utility to be able to interact with your
cloud provider api, using a simple config file for authentication credentials.
However, because these kinds of bindings are specific to both the cloud
provider, and the language in which you want to write your automation,
we decided to write our examples using basic cURL and as we felt that
these would be easier to adapt to most RESTful APIs.

The 4 levels of automation we refer to are as follows:

Level 0 – The Manual Approach
Servers are started, configured, and deployed in a manual fashion, either
using a web console or the command line.

At Level 0, we would probably spin up servers one at a time using a web
control panel. We do, however, also have the option of using raw HTTP
calls against the API in order to build servers. If we begin here, then we
can build on our examples as we progress through the subsequent levels
of complexity.

Step 1 - authenticate, and get the token that will be used in
subsequent steps:

OS_TOKEN=$(curl -s -d “{\”auth\”: {\”tenantName\”: \”admin\”,
\”passwordCredentials\”:{\”username\”: \”admin\”, \”password\”:
\”devstack\”}}}” -H “Content-type: application/json”
http://127.0.0.1:8774/v2.0/tokens | python -mjson.tool | grep -A2
token | tail -n1 | cut -d”\”” -f4)

Step 2 - get our tenant ID (a tenant is effectively an account
in OpenStack)

OS_TENANT_ID=$(curl -s -d “{\”auth\”: {\”tenantName\”:
\”admin\”, \”passwordCredentials\”:{\”username\”: \”admin\”,
\”password\”: \”devstack\”}}}” -H “Content-type: application/json”
http://127.0.0.1:8774/v2.0/tokens|python -mjson.tool|grep -A3
tenant|tail -1|cut -d”\”” -f 4)

Step 3 - build a server!

curl -s -X POST -H “x-auth-project-id: $OS_TENANT_ID” -H
“x-auth-token: $OS_TOKEN” -H “Content-type: application/
json” -d “{\”server\”: {\”min_count\”: 1, \”flavorRef\”: \”1\”,
\”name\”: \”myserver\”, \”imageRef\”: \”6509f265-3ba1-43e1-a24c-
7342c857e9eb\”, \”max_count\”: 1}}” http://127.0.0.1:8774/v2/$OS_
TENANT_ID/servers | python -mjson.tool

The response that you see after executing the command to build
a server will contain some useful information, such as the admin
(root) password and the server ID.

RACKSPACE WHITE PAPER:

A PRACTITIONERS GUIDE TO CLOUDBURSTING
PAGE: 21

{
 “server”: {
 “OS-DCF:diskConfig”: “MANUAL”,
 “adminPass”: “GnekmdehUnB5”,
 “id”: “5a8fffa6-0105-4821-96dc-e386fbb7c472”,
 “links”: [
 {
 “href”: “http://127.0.0.1:8774/v2/
a5addd8f83044871ab1b7ec75e31c33e/servers/5a8fffa6-0105-4821-96dc-
e386fbb7c472”,
 “rel”: “self”
 },
 {
 “href”: “http://127.0.0.1:8774/
a5addd8f83044871ab1b7ec75e31c33e/servers/5a8fffa6-0105-4821-96dc-
e386fbb7c472”,
 “rel”: “bookmark”
 }
]
 }
}

Right now we’re not going to store this information. We just need
to visibly verify that we do indeed have a server being built!

To get all the ID’s of all the servers that exist in our account,
we can simply ask (assume we already had 2 servers in the account,
making a total of 3):

$ curl -s -H “x-auth-project-id: $OS_TENANT_ID” -H “x-auth-token:
$OS_TOKEN” -H “Content-type: application/json” $NOVA_URL/v2/$OS_
TENANT_ID/servers | python -mjson.tool|grep -i id|cut -d”\”” -f4

9d8779cb-89bf-4fa1-bb17-2156abc2276e
032e3d00-bb24-4b60-b4c3-6056fa6578db
5a8fffa6-0105-4821-96dc-e386fbb7c472

This last command is going to be useful in the later levels when
we also need to scale back by shutting down servers…

Level 1 – The Big Red Button
Servers are started, configured, and deployed in a scripted fashion,
but a human operator remains responsible for starting the process.
The operator may be initiating a cloudburst ahead of a known date, or
responding to metrics that they have been monitoring manually.

Now that we have the raw commands needed to build a server, we
can wrap it all into an easily executable script (found here: http://goo.
gl/7lrsy). This script will take a single argument that specifies how
many servers to spin up. If no number is given, it assumes 1 server. Also
note that we are tidying up the output of the ‘create’ step to be user-
friendlier:

RACKSPACE WHITE PAPER:

A PRACTITIONERS GUIDE TO CLOUDBURSTING
PAGE: 22

#!/bin/bash

build_servers.sh

If no arg specified, assume 1 server to be built

NUM_SERVERS=${1:-1}

AUTH_URL=’http://127.0.0.1:35357’
OS_TENANT_NAME=’admin’
OS_USERNAME=’admin’
OS_PASSWORD=’devstack’
NOVA_URL=’http://127.0.0.1:8774’
IMAGE=’6509f265-3ba1-43e1-a24c-7342c857e9eb’
SERVER_NAME=’myserver’

Authenticate and get a token

OS_TOKEN=$(curl -s -d “{\”auth\”: {\”tenantName\”: \”$OS_TENANT_
NAME\”, \”passwordCredentials\”:{\”username\”: \”$OS_USERNAME\”,
\”password\”: \”$OS_PASSWORD\”}}}” -H “Content-type: application/
json” $AUTH_URL/v2.0/tokens | python -mjson.tool | grep -A2 token |
tail -n1 | cut -d”\”” -f4)

Get your tenant ID

OS_TENANT_ID=$(curl -s -d “{\”auth\”: {\”tenantName\”: \”$OS_
TENANT_NAME\”, \”passwordCredentials\”:{\”username\”: \”$OS_
USERNAME\”, \”password\”: \”$OS_PASSWORD\”}}}” -H “Content-type:
application/json” $AUTH_URL/v2.0/tokens|python -mjson.tool|grep
-A3 tenant|tail -1|cut -d”\”” -f 4)

Loop and spawn the specified number of servers

for i in $(seq ${NUM_SERVERS}) ; do

 #Build a server

 ID=$(curl -s -X POST -H “x-auth-project-id: $OS_TENANT_ID” -H
“x-auth-token: $OS_TOKEN” -H “Content-type: application/json” -d
“{\”server\”: {\”min_count\”: 1, \”flavorRef\”: \”1\”, \”name\”:
\”$SERVER_NAME-${i}\”, \”imageRef\”: \”$IMAGE\”, \”max_count\”:
1}}” $NOVA_URL/v2/$OS_TENANT_ID/servers | python -mjson.tool | grep
‘”id”’| cut -d”\”” -f4)

echo “building server id: $ID”

done

We can now execute the script, requesting four new servers:

$./build_servers.sh 4

building server id: ca76c7d0-cab7-48bf-91ec-fa78161fc98c
building server id: 1c29e374-7bec-41ba-a118-d40ff39ca91a
building server id: eda803f8-f3de-4481-867a-027020859189
building server id: 2888ad17-980a-409f-b73f-78f9e2116993

Listing our servers again – as we learned on page 26 – shows the
original three servers, plus the four we just created:

RACKSPACE WHITE PAPER:

A PRACTITIONERS GUIDE TO CLOUDBURSTING
PAGE: 23

$ curl -s -H “x-auth-project-id: $OS_TENANT_ID” -H “x-auth-token:

$OS_TOKEN” -H “Content-type: application/json” $NOVA_URL/v2/$OS_
TENANT_ID/servers | python -mjson.tool|grep -i id|cut -d”\”” -f4

9d8779cb-89bf-4fa1-bb17-2156abc2276e
032e3d00-bb24-4b60-b4c3-6056fa6578db
5a8fffa6-0105-4821-96dc-e386fbb7c472
ca76c7d0-cab7-48bf-91ec-fa78161fc98c
1c29e374-7bec-41ba-a118-d40ff39ca91a
eda803f8-f3de-4481-867a-027020859189
2888ad17-980a-409f-b73f-78f9e2116993

Now we have an easy way of spinning up ‘n’ servers, running our
script whenever we need to (in response to a monitoring alert,
ahead of a big newsletter, or a TV advert, or in the case of
Flowers Ltd, ahead of Mother’s Day).

Of course, we also need a way of turning them off, and we can
achieve this by creating a similar script (found here: http://
goo.gl/3h6zP), but using the delete command instead of the build
command. So our final stanza would look like this (again we are
assuming that all servers are equal and that it doesn’t matter
which ones we shut down):

---snip---

Delete specified number of servers

for i in $(echo “$SERVER_LIST” | tail -n $DEL_NUM) ; do

 echo “deleting server id: $i”

 curl -s -X DELETE -H “x-auth-project-id: $OS_TENANT_ID” -H
“x-auth-token: $OS_TOKEN” -H “Content-type: application/json”
$NOVA_URL/v2/$OS_TENANT_ID/servers/$i

done

---snip---

Running this script to delete three servers, we see the following:

$./delete_servers.sh 3

deleting server id: 18dc559b-dee3-4966-ae11-db4f2ccb0cfd
deleting server id: 81b59769-47bb-4a3b-8f0f-16bbb68f3673
deleting server id: c24ae6f4-f592-4d47-b342-457cf92f0428

There’s no real need for us to have two separate scripts, so these
could be combined into a single script that takes a -b (build) or
-d (delete) flag, as well as a numeric argument for the number of
servers you wish to act upon (this combined script can be found
here: http://goo.gl/fmlgm).

RACKSPACE WHITE PAPER:

A PRACTITIONERS GUIDE TO CLOUDBURSTING
PAGE: 24

Level 2 – Cron is Your Friend
Servers are started, configured, and deployed in a scripted fashion, and
the scripts are automatically triggered ahead of a known date.

We now have a working script that can be used to create or delete a
known number of servers. If we tell it to build 5 servers, it will do so
regardless of whether we already have 6 or 600 servers. In Level 2 we
need to create servers at known times before, and delete them at known
times after, a planned event. However, it’s actually more likely that we’ll
want to run a script to get us up to n servers, or down to n servers,
regardless of the number we start with. This is actually quite easy to
achieve by adding a function that will compare the current number of
servers with the desired number of servers, and call our build or delete
functions based on whether our desired number is more or less than our
current number:

---snip---
function attain_total() {
 DESIRED_NUM_SERVERS=$1

 # Grab the current number of servers

 CURRENT_NUM_SERVERS=$(curl -s -H “x-auth-project-id:
$OS_TENANT_ID” -H “x-auth-token: $OS_TOKEN” -H “Content-type:
application/json” $NOVA_URL/v2/$OS_TENANT_ID/servers | python
-mjson.tool|grep -i id|cut -d”\”” -f4|wc -l)

 if [[$DESIRED_NUM_SERVERS -gt $CURRENT_NUM_SERVERS]] ; then

 NUM=$(($DESIRED_NUM_SERVERS - $CURRENT_NUM_SERVERS))

 echo “you desire $DESIRED_NUM_SERVERS, you currently have
$CURRENT_NUM_SERVERS, so building $NUM new ones...”

 build_servers $NUM

 elif [[$CURRENT_NUM_SERVERS -gt $DESIRED_NUM_SERVERS]] ; then

 NUM=$(($CURRENT_NUM_SERVERS - $DESIRED_NUM_SERVERS))

 echo “you desire $DESIRED_NUM_SERVERS, you currently have
$CURRENT_NUM_SERVERS, so deleting $NUM old ones...”

 delete_servers $NUM

 else echo “You already have exactly $DESIRED_NUM_SERVERS
servers”

 fi

}

--snip—

And then we add a new flag to the command line options:

--snip--

“-t”|”--total”)

 attain_total $NUM;;

RACKSPACE WHITE PAPER:

A PRACTITIONERS GUIDE TO CLOUDBURSTING
PAGE: 25

--snip--

Now we can use our script to build n new servers, delete n old
servers, or make a decision regarding which of those things to do
to attain an absolute number of servers. Putting entries in ‘cron’
(for recurring build up/tear down patterns) or ‘at’ (for one-off
events) will enable this to happen automatically for us.

$./attain_total_servers.sh -t 7

you desire 7, you currently have 3, so building 4 new ones...

building server id: 4f3f559f-4628-43f1-bffc-0f3e08c8765d

building server id: 2fcc94b8-85cc-44f5-8c6a-19e83214a2fa

building server id: 71924af2-6ab6-401e-b26e-5cd6f5f76b90

building server id: 9ee8c683-6f48-4b7f-9e90-64f4ca2cdcf2

$./attain_total_servers.sh -t 4

you desire 4, you currently have 7, so deleting 3 old ones...

deleting server id: e5fd7271-4325-4d46-9898-3abc885f8dea

deleting server id: 3ba9166a-1e8a-4fed-acc8-37f3aacffdec

deleting server id: 5ef3acb5-1aca-42d9-bc06-67b00cb526a3

$./attain_total_servers.sh -t 4

You already have exactly 4 servers

A copy of this script can be found here: http://goo.gl/cjt2F.

Level 3 – The Singularity is Nigh
Servers are started, configured and deployed in a scripted fashion, and
automated monitoring tools trigger the scripts.

At Level 3, we need an additional level of input/automation. Up to Level
2, we have relied on prior calculations by a good System Administrator
(or guesswork based on expected volumes) to configure our timed
scale up/scale down events. There’s no reason, however, that our
current script can’t be called by an outer wrapper script on demand,
based on trigger events detected by a monitoring system. Probably the
easiest way to achieve this is to have the monitoring system manage
all the logic of deciding when to build/delete servers, based on some
arbitrary metric – it could in theory be based on something very simple
such as a timed curl against our site URL, or a count of the number
of connections in our database. It could also be produced by some

RACKSPACE WHITE PAPER:

A PRACTITIONERS GUIDE TO CLOUDBURSTING
PAGE: 26

very complex logic that gathers and averages the CPU utilisation/ load
average/ memory usage/ number of Apache connections across all our
web servers, plus some similar metrics from our database server and
app servers. The point is that whatever the basis of the data, you want
to distil it all down to a single number. Based on whether that arbitrary
number is higher or lower than a predefined threshold range, you would
then call your scripts to build/delete servers until the number is once
again within your threshold values. In the example below, we assume
that we are happy if our arbitrary monitor number is between 10 and 20
(indicating overall load is within tolerable thresholds):

--pseudo code--

#!/bin/bash
HIGH=20
LOW=10

get_mon_num () {

 # do some stuff here to squeeze your magic

 # number out of your monitoring system

}

while true; do
 get_mon_num
 if [[$MON_NUM -gt $HIGH]]; then
 delete_servers 1
 sleep 60
 elif [[$MON_NUM -lt $LOW]]; then
 build_servers 1
 sleep 60
 fi
done

--pseudo code---

RACKSPACE WHITE PAPER:

A PRACTITIONERS GUIDE TO CLOUDBURSTING
PAGE: 27

The role of the load balancer
In the script examples above, we neglected to cover one key (and often
overlooked) component of a successful cloudbursting strategy. As
we’ve seen, it’s fairly easy to spin servers up or down in an automated
fashion in preparation for, or in response to, higher than usual levels
of traffic. We have our newly spun up servers being configured by
Chef (or Puppet), our application data being loaded on to the servers,
and everything started up and ready to receive traffic. But how do
we actually get the traffic to those newly built servers? Of course, the
answer is a load balancer.

THE LOAD BALANCER
DIRECTS TRAFFIC,
WHICH CAN LEAD TO
EXPENSIVE NETWORK
ACTIVITY.

We’ve already discussed (see page 13) the importance of an API in
selecting a cloud infrastructure provider, but finding a load balancer with
a robust API is just as important. The load balancer must be able to
dynamically and gracefully handle the addition of servers to and – some
may say more importantly – the removal of servers from, its traffic pools.
It should be able to do all of this transparently, without interrupting the
service to end-users. And it should be able to do this automatically via
some simple calls to its API.

It’s also worth thinking about where this load balancer is physically
going to sit. We assume that the ‘static’ environment has dedicated
hardware, and that we are bursting to a remote cloud location in a
different network (although this ‘remote’ location may actually be
within the same data centre). In this scenario, your load balancer
would already exist in the static environment to load balance traffic
to your static pool of web servers. By adding a remote pool of cloud
web servers, you must consider the traffic flows that will now exist –

RACKSPACE WHITE PAPER:

A PRACTITIONERS GUIDE TO CLOUDBURSTING
PAGE: 28

particularly if those web servers need to interact with the database at
any point.

In a scenario like this, you can easily see why a strong up-front caching
strategy is a good idea. Actually it’s always a good idea to minimise
database calls wherever possible, but here it’s extremely important if you
wish to reduce those round trips (and your bandwidth costs to boot).

What Goes Up, Must Come Down
Cloud infrastructure must be paid for, all the time that it is being used.
As well as developing methods to start cloud servers when they are
required, equal (or indeed greater) effort should also be devoted to
identifying the metrics that tell you when they should be shut down
again. You can see some very basic examples of this behaviour in the
code examples above.

As mentioned in the examples, the metrics on which you choose to base
your decision to shrink your infrastructure are important. It’s likely that
you’d want to factor in some lag time post-peak, rather than spinning
infrastructure down immediately that the threshold metric is no longer
breached. You may even decide that any new server that is spun up has
a minimum lifetime, to prevent build/delete cycle thrashing when your
metrics are sitting on or around the threshold.

Most load balancers will allow you to drain users from a back end node
before removing it. You should ensure that any locally cached data on
the server has been committed back to your data store before removing
the server. Your monitoring systems will need to be updated as the
server is removed. And basically anything else that could be unique to
that node since it has been spun up, will need to be normalised back in
to the environment before you remove the node.

Cloud Management Tools
As you become more familiar with the opportunities created by
routine and managed cloudbursting, or as your requirements and
application complexities grow (making it harder to manage your
automation and decision making using simple scripts), you may
wish to consider making use of tools to make the process even more
straightforward. RightScale20 and enStratus21 are two examples of
products that make managing your cloudbursts more robust. They
provide a full management suite that enables you to deploy and control
entire infrastructures that flex with demand, and contain a lot of pre-
configured images and scripts that already work with many cloud
providers.

RACKSPACE WHITE PAPER:

A PRACTITIONERS GUIDE TO CLOUDBURSTING
PAGE: 29

Summary and Recommendations
Regardless of the hype and misunderstanding that surround the term,
this paper has hopefully demonstrated that cloudbursting is a viable and
valuable tool to consider when coping with fluctuating levels of demand
for IT infrastructure. Cloudbursting is not the answer to every problem,
and it is not going to save you when traffic to your site explodes and
then plummets in a few seconds or minutes.

But with some forethought, cloudbursting may well prove to be the
most cost-effective way for you to cope with the predictable peaks in
demand that every web property hopes for.

Prepare
Preparation is, indeed, everything. It takes time to get a new virtual
machine ready for use. It also takes time to select your cloud provider,
time to gather all of the machine images and applications that you’ll
need, time to understand the steps required to add capacity to your
application without it breaking, and time to test everything to make sure
it works. Find that time before you are under pressure, and prepare well
by following some of the steps outlined on page 11.

Automate
Cloudbursting will be of most value to you if you can reliably do it
whenever you need to. Rather than risk breaking things with a careless
typo or forgotten component, automate the process as much as
possible using build scripts and automation tools.

Test
Once you think you are ready to cloudburst, test everything to make
sure that it works. Then test it again, regularly.

20 http://www.rightscale.com/
21 http://www.enstratus.com/

RACKSPACE WHITE PAPER:

A PRACTITIONERS GUIDE TO CLOUDBURSTING
PAGE: 30

RackConnect
RackConnect is the hybrid hosting solution from Rackspace that allows
you to combine dedicated hosting and cloud in the same network to
facilitate Cloudbursting. We use either an F5 LTM load balancer or Cisco
ASA firewall to create this common network. The firewall adds a layer of
physical security to the cloud and provides a termination point for VPNs
from customer sites, enabling off-site Cloudbursting.

 Organisations that host their regular IT in a Rackspace data centre
and use the Rackspace Cloud in that same data centre for their
cloudbursting also have the opportunity to save on the cost of network
traffic using RackConnect22.

RACKCONNECT SEAMLESSLY JOINS PHYSICAL INFRASTRUCTURE HOSTED
BY RACKSPACE WITH THE FLEXIBLE SCALING OFFERED BY THE RACKSPACE
CLOUD

In the figure on page 29, where dedicated infrastructure is hosted
in a different data centre to the cloud infrastructure, network traffic
has to take an expensive (in terms of actual cost, and also potential
latency) round trip between the two environments. RackConnect can
circumvent this problem by creating a private, low latency network
between dedicated infrastructure and cloud infrastructure, removing
both the financial cost of bandwidth charges and the performance cost
of network latency.

RACKSPACE WHITE PAPER:

A PRACTITIONERS GUIDE TO CLOUDBURSTING
PAGE: 31

About Rackspace
Rackspace Hosting is the world’s leading specialist in the hosting and
cloud computing industry, and the founder of OpenStack, an open
source cloud platform. Rackspace provides Fanatical Support® to its
customers, across a portfolio of IT services, including Managed Hosting
and Cloud Computing. Rackspace was recognised by the 2011 Sunday
Times Best Places to Work and the 2010 Financial Times Top 50 Great
Place to Work in the United Kingdom for the sixth year in a row. The
company was also positioned in the Leaders Quadrant by Gartner Inc.
in their 2010 Magic Quadrant for Cloud Infrastructure as a Service and
Web Hosting. For more information, visit www.rackspace.co.uk.

22 http://www.rackspace.co.uk/managed-hosting/hosting-solutions/hybrid-hosting/rackconnect/

RACKSPACE WHITE PAPER:

A PRACTITIONERS GUIDE TO CLOUDBURSTING
PAGE: 32

Rackspace Hosting
Global Headquarters
5000 Walzem Road
San Antonio. TX 78218

Phone: 800-961-2888
Intl: +1 210 312 4700
Online: www.rackspace.com

UK Office
Rackspace Ltd.
5 Millington Road
Hyde Park Hayes
Middlesex, UB3 4AZ

Phone: 0800-988-0100
Intl: +44 (0)20 8734 2600
Online: www.rackspace.co.uk

Benelux Office
Rackspace Benelux B.V.
Teleportboulevard 110
1043 EJ Amsterdam

Phone: 00800 8899 00 33
Intl: +31 (0)20 753 2301
Online: www.rackspace.nl

Hong Kong Office
9/F, Cambridge House, Taikoo Place
979 King’s Road, Quarry Bay,

Sales: +852 3752 6465
Support +852 3752 6464
Online: www.rackspace.com.hk

Australia Office
Suite 3, Level 7,
210 George Street,
Sydney, NSW 2000,

Sales: 1-800-722577
Support: 1-800-727145
Online: www.rackspace.com.au

